

Software Requirements
Specification

Ez Shopping

1.0.0

Ryan Arnold; Janki Parmar

March. 22, 2025

 Page 2

Table of Contents

Revision History

1 Introduction

1.1 Purpose

1.2 Document Conventions

1.3 References

2 Overall Description

2.1 Product Perspective

2.2 Product Features

2.3 User Classes and Characteristics

2.4 Operating Environment

2.5 Design and Implementation Constraints

2.6 Assumptions and Dependencies

3 System Features

3.1 Authentication Features

3.2 Frontend Features

3.3 Backend Features

3.4 Database Features

3.5 Interface Features

4 External Interface Requirements

4.1 User Interfaces

4.2 Hardware Interfaces

4.3 Software Interfaces

4.4 Communications Interfaces

5 Other Nonfunctional Requirements

5.1 Performance Requirements

5.2 Safety Requirements

5.3 Security Requirements

6 Key Resource Requirements

Revision History

Name Date Reason For Changes Version
Ryan Arnold 01/22/2025 Initial Commit and upload of project. 0.1.0

 Page 3

Janki Parmar 01/22/2025 First cut at login services. 0.2.0

Ryan Arnold 01/23/2025 First functional CICD pipeline, using Github
Actions.

0.3.0

Janki Parmar 01/25/2025 First Frontend demo using Streamlit. 0.4.0
Ryan Arnold 02/28/2025 Added prototype API for

FrontendBackendInterface
0.5.0

Janki Parmar 02/01/2025 First Release that has functional Login
Service.

0.6.0

Ryan Arnold 02/02/2025 Backend Integration of Kroger Locations
API

0.7.0

Ryan Arnold 02/03/2025 Second Version of Frontend Login Service. 0.7.1
Ryan Arnold 02/05/2025 Backend Integration of Kroger Products

API
0.8.0

Ryan Arnold 02/09/2025 First cut at integrating MongoDB client 0.9.0
Ryan Arnold 02/15/2025 Fully functional backend integration of

Kroger API
1.0.0

Janki Parmar 02/16/2025 Working version of frontend dashboard 1.1.0
Ryan Arnold 03/06/2025 Frontend feature upgrades 1.1.1
Ryan Arnold 03/11/2025 Full integration of all frontend features. 1.2.0
Ryan Arnold 03/12/2025 Full integration/bridge between frontend

and backend
1.3.0

Janki Parmar 03/13/2025 Full integration of image object detection
pipeline

1.4.0

Ryan Arnold 03/21/2025 backend Kroger integration bug fixes.
Add support for multiple image formats.
Final CICD release pipeline fixes

1.5.0

1 Introduction
1.1 Purpose

This document outlines the software requirements and specifications of the “EzShopping” app, a Find
Fresh Innovations LLC. product. At the time of writing, the latest release of the software is 1.5.0.

1.2 Document Conventions

In this document, every listed requirement is intended to have its own priority. This document will
use bulleted lists for requirement and feature lists to improve readability. Requirement numbering

 Page 4

is based on the scheme provided in a requirements spreadsheet to be included in the final set of
deliverables. For example, REQ-1 corresponds to RequirementID: 1 in the spreadsheet tab
“Requirements”. Note: requirements may not always be ordered logically, meaning dependent
features may not be ordered after the independent feature(s) they depend on.

1.3 References

Kroger Developer Documentation https://developer.kroger.com/documentation/partner

Streamlit Documentation https://docs.streamlit.io/

ngrok Documentation https://ngrok.com/docs/

Docker Documentation https://docs.docker.com/

https://developer.kroger.com/documentation/partner
https://docs.streamlit.io/
https://ngrok.com/docs/
https://docs.docker.com/

 Page 5

2 Overall Description
2.1 Product Perspective

Our application is used to automate grocery shopping by allowing users to upload images of
common, household grocery products; have a machine learning algorithm identify those objects;
then subsequently add the identified products to an authenticated Krogger shopping cart instance
on Kroger.com. Our software product is an original design, and self-contained.

2.2 Product Features

➢ Frontend Features
○ The frontend has a caching mechanism, so that users can run the application from

where they left off, without having to restart.
○ The frontend directs users to a “Dashboard” page, which hosts three subpages:

■ upload + add-to-cart tab
■ product history tab
■ tab that externally links to Kroger cart page

○ Image uploader supports the following image formats: *.png, *.jpg, *.tiff
○ The “add to cart” widget interacts with the backend to automatically add a grocery

item to an authenticated user’s Kroger cart.
○ A widget that enables the user to specify the quantity of items to add to the cart
○ A service to render uploaded images upon upload.
○ History service, so that users can view a history of all their products, and be able to

“re-add” to their shopping carts. This combines elements of the frontend, backend,
and database linkages.

➢ Authentication Features
○ The frontend has a login service. This allows users to create accounts or login with

existing credentials.
○ Support for Oauth2 authentication with Kroger API.
○ Gateway to redirect traffic from Kroger authentication services.

➢ Database Features
○ A Mongo Database is used to store user data, and encrypts passwords.
○ Database to store locations response data to enable faster lookups.
○ Database to store product response data to enable faster lookups.
○ Database to store raw image data, as well as classification labels for visualization

and to reduce added overhead from object detection pipeline.
○ Database server support using Docker and docker-compose cli.

➢ Backend Features
○ An Image recognition pipeline to automatically detect and classify grocery items in

user-supplied images.
○ Kroger Locations API backend REST integration.
○ Kroger Products API backend REST integration.
○ Filters that request products based on lowest price and promotional prices.
○ Kroger Cart API backend REST integration.

 Page 6

➢ Interface Features
○ An interface to bridge the frontend and backend in a way that supports streamlined

integration of the two pieces of software while independent development occurs.
○ Common set of Python dataclasses for easier, language-enabled interactions with

pymongo clients.
○ backend logging and error-handling service.

2.3 User Classes and Characteristics

● FrontendBackendInterface: API that abstracts implementation details of common
functions:

○ add_to_cart()
○ classify_image()
○ get_cheapest_product_nearby()
○ get_nearest_kroger

● ProductCard: used to represent product data records.
● KrogerLocationCard: used to represent location data on nearby Kroger locations.
● ProductImageRecord: used to represent uploaded image data and classification labels.
● UserData: used to store usernames, passwords, and API tokens.
● ProductHistory: used to collect uploaded information during a past time window.

2.4 Operating Environment

The software is operating system agnostic, and will work on most modern platforms. The software
does require a version of Python 3.10 or greater. The host machine must have virtual machine
support to run docker. We assume that developers wanting to deploy the app can install docker,
ngrok, and Python-Poetry on their development machines. We depend on Github actions to run
CICD pipelines. Pytest is the framework we employ for our unit testing pipeline. Finally, developers
must create accounts with Kroger Developers and Ngrok to gain access to API access tokens before
deploying the application.

2.5 Design and Implementation Constraints

The most prominent limitation in our software is that it currently supports localhost mode only.
Tools we use to deploy the application include: Streamlit frontend library, ngrok for gateway
tunneling, docker and docker-compose for database servers, MongoDB as the database schema,
bash shell, JSON for configuration files, and the Python3 programming language

2.6 Assumptions and Dependencies

We assume that the Kroger grocery store website is acceptable to most users, and that the users are
willing to create a Kroger account that they can use to authenticate with. Third party commercial
resources include Ngrok and Kroger Developer API. For the MVP of this product, we assumed that
localhost mode is acceptable. Notable Python dependencies include and are not limited to: Poetry,
Pillow, Yolo11, Torch, Streamlit, requests, and pymongo.

 Page 7

3 System Features

3.1 Authentication Features

3.1.1 Description and Priority
A user of our application must be able to personalize their data, and therefore have their own
account. Also, in order to use Kroger API services, client and customer tokens are required,
so the goal of this feature is to be able to manage the authentication data per-user and
securely. The Priority is HIGH. The risk is high, as the authentication mechanisms are
complex and proper trafficking services are usually paid services.

3.1.2 Stimulus/Response Sequences
Users of our application must be willing to associate their Kroger account with the

application. Users should be able to create a new account with our services, and their
passwords should be secured using encryption algorithms. Once users authorize this
app with their Kroger accounts, our application should support Kroger’s Oauth2
authentication methodology, which requires traffic redirection and an active gateway.

3.1.3 Functional Requirements
REQ-9: Create a homepage with a login portal and the option to create a new account. If
invalid credentials are entered, the user should be warned, and if appropriate, directed to
create an account.

REQ-20: The application must properly perform a handshake with Kroger’s API via their
Oauth2 authentication mechanism. This includes ingesting the response access token and
being able to redirect traffic through an appropriate gateway service.

REQ-21: Customer data must be protected and secured by using a sha256 hash encryption
algorithm.

 Page 8

3.2 Frontend Features

3.2.1 Description and Priority

The application frontend is hosted through Python Streamlit, and is the primary interaction
point with users and customers. The priority is HIGH. The risk is low, as we are confident in
our selection of a frontend framework and its ease-of-use.

3.2.2 Stimulus/Response Sequences
The frontend shall feature two primary pages: a Home/login page and a dashboard page.

Within the dashboard, there will be three subpages, or streamlit tabs. These subpages
include: “upload and add to cart”, “History”, and “My Kroger Cart”. The upload and add
page should allow the user to upload an image of grocery products using a button and
display the image uploaded to the user. Once uploaded, a backend image detection
pipeline runs, and displays to the user what the model detected. Once processed, the
user should be able to select a button that “adds to cart”, supplemented with a widget
to allow the user to set an item quantity. The history page should show the user an
itemized history of all products they uploaded within a time window. The time
window is presented as a radio menu. Once selected, entries showing the image
uploaded, classification labels, metadata, and all associated product+location data
should be displayed. The user can then “re-add” the record to their cart if they wish.
Finally, the “My Kroger Cart” page should direct the user to their authenticated cart
instance.

3.2.3 Functional Requirements

REQ-7: Create a fully functional end-to-end frontend that can work in tandem with the
backend.

REQ-8: Use the Python Streamlit library as the primary frontend framework.

REQ-9: Create a homepage with a login portal and the option to create a new account. If an
invalid username or password are entered, the user should be warned and redirected
appropriately. The user should, at any point, be able to logout.

REQ-11: Create a page that allows users to “Add to Cart” and a corresponding link to the
user’s authenticated cart page.

REQ-24: The frontend should support a caching mechanism such that they can return to the
last spot they left off at when they were last logged in.

REQ-25: The user should be able to view a history of their product queries, and be able to
re-add items to their cart for quicker results.

REQ-27: The user should be able to upload multiple image formats (*.png, *.jpg, *.tiff), and
unable to select unsupported formats from their filesystem.

 Page 9

3.3 Backend Features

3.3.1 Description and Priority

The backend for our application will mainly consist of a machine-learning, image-object
detection pipeline, and a library that integrates with Kroger: Locations, Products, and Cart
REST APIs. The priority is HIGH. The risk is low, since we are confident we will interact with
Kroger, and their API is well-documented. The same applies to Ultralytics YOLO v11.

3.3.2 Stimulus/Response Sequences
The image classification pipeline shall take image data as input, and produce object labels

based on what it detects in the image. If the labels do not intersect with a label
subset, filtered to grocery items, then an empty list is returned. If the image being
analyzed already exists in a database, use the previously predicted labels to reduce
overhead. For our Kroger backend integration, we must have a mechanism to retrieve
client API keys, and customer access tokens. For any REST request, we must first
check to see if the requested product data already exists in our databases, to
minimize API calls to Kroger.

3.3.3 Functional Requirements

REQ-1: Backend must include a fully functional image object recognition pipeline.

REQ-3: REST-integrated library must be designed to request grocery product data and PUT
data through the following Kroger APIs: Locations, Products, Cart.

REQ-4: REST-integrated library must select products based on the lowest products available
at the nearest location.

REQ-5: REST-integrated library can filter-out items that are out-of-stock.

REQ-14: Establish a backend logging system to better debug errors.

REQ-17: Products interface can discriminate between market and promotional prices.

 Page 10

3.4 Database Features

3.4.1 Description and Priority

To be able to lookup historical data and access output efficiently, we require our app to have a
set of databases. Data storage pertains to: User data, uploaded image and classification data,
Kroger locations data, and Kroger products data. The priority is MEDIUM. The risk is
medium, since all users/developers may not be able to run Docker properly.

3.4.2 Stimulus/Response Sequences
The databases will be designed using MongoDB. We will host separate collections that can be

linked to each other. User data, including authentication tokens, should be stored in a
user database collection. When a user uploads an image, it gets classified by our
backend object detection pipeline. The classification results and the raw image data
should be stored in its own database, and linked to the user who uploaded it. Once
uploaded, the object should be searched in Kroger’s product API, as well as which
Kroger is nearest to the user. The corresponding response data should be stored in
separate collections, and linked via the unique location ID. Finally The user may
request a history of their uploads. Images should be linked to the user who uploaded
them; the detected objects should be linked to products via search term; and product
data should be linked to Kroger locations via location ID.

3.4.3 Functional Requirements

REQ-2: Store image uploads and classification results to a unique MongoDB collection.

REQ-6: REST response data from Kroger API must be stored in a database to enable caching
and limit API calls (and therefore reduces costs)

REQ-22: User data should be securely stored (using encryption) to a MongoDB collection.

REQ-23: Databases should support linking, such that images, products, and the user
requesting them can be associated and queried together

 Page 11

3.5 Interface Features

3.5.1 Description and Priority

In order for development of independent features to progress asynchronously, we require
interfaces to abstract implementation details, where they are not explicitly needed. This
includes our FrontendBackendInterface. We also designed interfaces to store and retrieve
data from all our databases in a Python language supported fashion. This makes it simpler to
integrate data items to the frontend and backend, as they pertain to our databases. The
priority is LOW. The risk is low, since the interfaces do not interfere with core business logic.

3.5.2 Stimulus/Response Sequences
The FrontendBackendInterface abstracts high-level dependent features including: adding to

cart, classifying an image, storing an image, finding the cheapest product nearby, and
finding the nearest Kroger locations. This way, frontend development can continue,
using these methods, while backend features and improvements are being developed.
Having dataclasses for user data, product data, image data, and history records makes
it easier to develop with databases, since these classes abstract database schemas
in-language.

3.5.3 Functional Requirements

REQ-10: Create a Frontend-Backend interface to bridge the backend to the frontend to
decouple code for more streamlined, asynchronous development of independent features.

REQ-13: Design a common set of dataclasses for result records that can be marshalled to
our databases.

REQ-16: Establish a unit testing workflow, particularly to validate items in the test plan and
ensure that all features can integrate together in the same environment.

 Page 12

4 External Interface Requirements
4.1 User Interfaces

Our primary interface exposed to the users is our Streamlit frontend. The Home/Login Page
provides text fields for their username and password, where the password field supports password
hidden visibility. A “login” and “Create account” buttons are provided. We also provide buttons that
link our Github source code and documentation site. Immediately after the user chooses to login,
the user is asked to authenticate their Kroger account with a button. If successful, the Kroger
authentication service redirects the user back to the application. Upon successful login, the user is
directed to a “Dashboard” page. This page has tabs that function like sub-pages. There is a tab for
Upload and Add to Cart that has an image uploader widget, a “Add to cart” button, and a quantity
ticker widget. The next tab is a History tab, that will show upload records within a user-selected
time window. The time window options are presented in a radio menu. Once a time window is
selected, the frontend will display tiles of all the user’s uploaded images, product data, classification
labels, and other relevant metadata. The user is also presented the option to “re-add” to cart, along
with quantity widgets, for every tile presented. Finally, the user is presented a My Cart tab, that will
direct the user to their authenticated Kroger cart instance, via a link button.

4.2 Hardware Interfaces

Currently, our application only supports localhost mode. To deploy database servers, we use Docker
containers, which act like virtual machines on the hardware.

4.3 Software Interfaces

Our software will run on most operating systems and platforms that are modern. This includes:
Ubuntu Linux, MacOS, and Windows. Our software connects to Mongo Databases using the pymongo
client library. Data includes user data, product response data, location response data, raw image
data, and image-object classification labels. Grocery product data is requested through Kroger
Developer endpoints, provided in their public APIs for: Locations, Products, and Cart. The databases
are served using Docker and the docker-compose cli tool. Our network trafficking gateway is hosted
by ngrok, which must be installed by a system package manager. The gateway deployment
entrypoint is provided through a bash shell script. Image classification is possible by using the
Ultralytics YOLO v11, pre-trained classification model. Finally, we use the Python Streamlit module
to host our frontend application.

4.4 Communications Interfaces

We employ ngrok to create a network trafficking gateway, which creates network tunnels (binds
addresses and ports) on the host machine to a public network trafficking gateway. This facilitates
traffic between Kroger authentication services and our hosted application. The gateway abides by
HTTP and HTTPS communication standards

 Page 13

5 Other Nonfunctional Requirements
5.1 Performance Requirements

REST requests shall not exceed 60s. An explicit timeout argument is set to enforce this requirement.
Image classification should not exceed several seconds. Adding a product to a user’s cart shall not
exceed several seconds.

5.2 Safety Requirements

N/A.

5.3 Security Requirements

User passwords must be encrypted using sha256 hash encryption algorithms. Kroger account
access must be manually authorized by all users before the program collects customer access tokens
for further usage.

 Page 14

6 Key Resource Requirements

Major Project
Activities Skill/Expertise Required Internal

Resource

Extern
al

Resou
rce

Sprint and Meeting
Management

Managerial Ryan Arnold: Part-time None

Frontend Development Frontend Development Ryan Arnold: Part-time

Janki Parmar: Part-time

None

Interface Development Full Stack Experience Ryan Arnold: Part-time None

Backend Development Backend Experience Ryan Arnold: Part-time

Janki Parmar: Part-time

None

Database Development Mongo Database Experience Ryan Arnold: Part-time None

Documentation Documentation Website
Generator Experience

Ryan Arnold: Part-time None

	
	
	Software Requirements Specification
	Ez Shopping
	Revision History

	1 Introduction
	1.1 Purpose
	1.2 Document Conventions
	1.3 References

	2 Overall Description
	2.1 Product Perspective
	2.2 Product Features
	2.3 User Classes and Characteristics
	2.4 Operating Environment
	2.5 Design and Implementation Constraints
	2.6 Assumptions and Dependencies

	3 System Features
	3.1 Authentication Features
	
	
	
	3.2 Frontend Features
	3.3 Backend Features
	3.4 Database Features
	3.5 Interface Features

	4 External Interface Requirements
	4.1 User Interfaces
	4.2 Hardware Interfaces
	4.3 Software Interfaces
	4.4 Communications Interfaces

	5 Other Nonfunctional Requirements
	5.1 Performance Requirements
	5.2 Safety Requirements
	5.3 Security Requirements

	6 Key Resource Requirements

